11 research outputs found

    Reducible Dictionaries for Single Image Super-Resolution based on Patch Matching and Mean Shifting

    Get PDF
    A single-image super-resolution (SR) method is proposed. The proposed method uses a generated dictionary from pairs of high resolution (HR) images and their corresponding low resolution (LR) representations. First, HR images and the corresponding LR ones are divided into patches of HR and LR, respectively, and then they are collected into separate dictionaries. Afterward, when performing SR, the distance between every patch of the input LR image and those of available LR patches in the LR dictionary is calculated. The minimum distance between the input LR patch and those in the LR dictionary is taken, and its counterpart from the HR dictionary is passed through an illumination enhancement process. By this technique, the noticeable change of illumination between neighbor patches in the super-resolved image is significantly reduced. The enhanced HR patch represents the HR patch of the super-resolved image. Finally, to remove the blocking effect caused by merging the patches, an average of the obtained HR image and the interpolated image obtained using bicubic interpolation is calculated. The quantitative and qualitative analyses show the superiority of the proposed technique over the conventional and state-of-art methods

    Dual-Source Linear Energy Prediction (LINE-P) Model in the Context of WSNs

    No full text
    Energy harvesting technologies such as miniature power solar panels and micro wind turbines are increasingly used to help power wireless sensor network nodes. However, a major drawback of energy harvesting is its varying and intermittent characteristic, which can negatively affect the quality of service. This calls for careful design and operation of the nodes, possibly by means of, e.g., dynamic duty cycling and/or dynamic frequency and voltage scaling. In this context, various energy prediction models have been proposed in the literature; however, they are typically compute-intensive or only suitable for a single type of energy source. In this paper, we propose Linear Energy Prediction “LINE-P”, a lightweight, yet relatively accurate model based on approximation and sampling theory; LINE-P is suitable for dual-source energy harvesting. Simulations and comparisons against existing similar models have been conducted with low and medium resolutions (i.e., 60 and 22 min intervals/24 h) for the solar energy source (low variations) and with high resolutions (15 min intervals/24 h) for the wind energy source. The results show that the accuracy of the solar-based and wind-based predictions is up to approximately 98% and 96%, respectively, while requiring a lower complexity and memory than the other models. For the cases where LINE-P’s accuracy is lower than that of other approaches, it still has the advantage of lower computing requirements, making it more suitable for embedded implementation, e.g., in wireless sensor network coordinator nodes or gateways

    Adaptive LINE-P: An Adaptive Linear Energy Prediction Model for Wireless Sensor Network Nodes

    No full text
    In the context of wireless sensor networks, energy prediction models are increasingly useful tools that can facilitate the power management of the wireless sensor network (WSN) nodes. However, most of the existing models suffer from the so-called fixed weighting parameter, which limits their applicability when it comes to, e.g., solar energy harvesters with varying characteristics. Thus, in this article we propose the Adaptive LINE-P (all cases) model that calculates adaptive weighting parameters based on the stored energy profiles. Furthermore, we also present a profile compression method to reduce the memory requirements. To determine the performance of our proposed model, we have used real data for the solar and wind energy profiles. The simulation results show that our model achieves 90–94% accuracy and that the compressed method reduces memory overheads by 50% as compared to state-of-the-art models

    Geometric properties of Gabor frames with a random window

    No full text
    In this paper we address various geometric properties of frames, such as spark, coherence, restricted isometry property, and frame order statistics. These properties play crucial role in various signal processing problems, including compressive sensing, phase retrieval, and quantization. We focus on a particular case of structured frames, namely on Gabor frames, where frame vectors are time and frequency shifts of a random window, and show that geometric properties of Gabor frames are close to optimum, which is usually demonstrated by Gaussian frames with independent vectors

    Geometric properties of Gabor frames with a random window

    No full text
    In this paper we address various geometric properties of frames, such as spark, coherence, restricted isometry property, and frame order statistics. These properties play crucial role in various signal processing problems, including compressive sensing, phase retrieval, and quantization. We focus on a particular case of structured frames, namely on Gabor frames, where frame vectors are time and frequency shifts of a random window, and show that geometric properties of Gabor frames are close to optimum, which is usually demonstrated by Gaussian frames with independent vectors

    Improved Interpolation Kernels for Super-resolution Algorithms

    No full text

    A new low-complexity patch-based image super-resolution

    No full text
    In this study, a novel single image super-resolution (SR) method, which uses a generated dictionary from pairs of high-resolution (HR) images and their corresponding low-resolution (LR) representations, is proposed. First, HR and LR dictionaries are created by dividing HR and LR images into patches Afterwards, when performing SR, the distance between every patch of the input LR image and those of available LR patches in the LR dictionary are calculated. The minimum distance between the input LR patch and those in the LR dictionary is taken, and its counterpart from the HR dictionary will be passed through an illumination enhancement process resulting in consistency of illumination between neighbour patches. This process is applied to all patches of the LR image. Finally, in order to remove the blocking effect caused by merging the patches, an average of the obtained HR image and the interpolated image is calculated. Furthermore, it is shown that the stabe of dictionaries is reducible to a great degree. The speed of the system is improved by 62.5%. The quantitative and qualitative analyses of the experimental results show the superiority of the proposed technique over the conventional and state-of-the-art methods
    corecore